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Adaptive modification for time evolving meshes
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A mesh adaptation scheme is presented that employs edge collapse to coarsen the mesh
and selective point placement combined with an incremental Delaunay algorithm for mesh
enrichment. The coarsening and enrichment procedures can be used in isolation to achieve
a solution adapted mesh for time varying computations whose boundaries remain fixed.
These procedures can also be combined with a mesh movement technique to form an
adaptation algorithm that will modify the mesh of a domain whose shape is evolving in
time. The adaptation techniques are described and examples are presented to illustrate the
method for time dependent problems arising from crack nucleation studies and vortex
shedding of incompressible flow over a cylinder. C© 2003 Kluwer Academic Publishers

1. Introduction
Many computational problems of engineering interest
are essentially unsteady in nature and can only be re-
alistically solved if their time dependence is fully rec-
ognized as part of the computation. For computations
that involve a finite element analysis, this requires a
mesh adaptive scheme that is able to follow the evolu-
tion of the computed solution and, if necessary, adjust
to changes in the shape of the computational domain.
For static adaptation (i.e., adaptation to the time de-
pendent changes in the computed solution on a fixed
computational domain) mesh coarsening and mesh re-
finement are the main tools used to achieve the required
goal. For dynamic adaptation (i.e., meshes that evolve
to follow changes in the shape of the computational do-
main) it is necessary to augment the mesh coarsening
and refinement by a mesh movement algorithm. This
paper presents a method to carry out both static and
dynamic adaptation on unstructured meshes consisting
of triangles in 2D and tetrahedra in 3D.

Static adaptation is illustrated by an example from
fluid dynamics that shows an adaptive computation of
vortex shedding for incompressible flow over a cylin-
der. Dynamic adaptation, in which the domain changes
shape, is illustrated by an example of a finite element
computation of crack nucleation.

2. Mesh coarsening
The method of coarsening that is currently implemented
uses edge collapse. Given a triangle that is a candidate
for removal, take its shortest edge and allow the two
endpoints of this edge to collapse to a single point. As
a result, this edge together with the two incident trian-
gles is removed from the triangulation and the number
of points in the mesh decreases by one. The effect of this
operation, when repeatedly applied to a region of the tri-
angulation, will result in a much coarser distribution of
points. Unfortunately, the quality of the triangulation is
also severely degraded. The mesh enrichment algorithm
described in the next section dramatically improves the

mesh quality, but even better results are obtained if the
coarsened mesh is optimized prior to mesh enrichment.
In the planar case, the coarsened mesh is optimized by
swapping diagonals in order to maximize the minimum
of the six angles of any pair of triangles with a common
edge which form a convex quadrilateral. This operation
will lead to the Delaunay triangulation of the coarsened
point set for any planar triangulation [1].

A similar collapse procedure can be applied in three
dimensions although the implementation is not so
straightforward as in the planar case. It is necessary to
identify the ring of tetrahedra incident to the candidate
edge. The two end points of the edge are collapsed into
a single point, the edge is removed and the ring of tetra-
hedra disappears from the mesh. It is necessary to check
whether the modified tetrahedra are still valid (i.e., have
positive volumes). In three dimensions, as in the pla-
nar case, it is advantageous to optimize the coarsened
mesh prior to the enrichment stage. This is particularly
important since slivers, which may have been created
in the coarsened tetrahedral mesh, are not necessarily
removed during mesh enrichment. Slivers are zero vol-
ume, or near zero volume, tetrahedra for which the ratio
of circum-radius R to average edge length L is O(1)
[2].

Edge/face swapping procedures are used to remove
slivers [3]. The tetrahedra are sorted into a list, ordered
according to the ratio of circum-radius to in-radius, with
the tetrahedron having the largest ratio appearing at the
front. The dihedral angle of each tetrahedron is com-
puted and any tetrahedron with a maximum dihedral
angle greater than 120◦ is considered to be a candidate
for removal by edge/face swapping. Only tetrahedra
with large ratios of circum-radius to in-radius are likely
to be slivers. These tetrahedra typically have two op-
posite edges whose dihedral angles are very large with
the remaining four dihedral angles assuming very small
values. An effective strategy is to consider in turn each
of the two edges whose dihedral angles are largest and
examine the possibility of removing the edge, and thus
eliminating the sliver, by an edge/face swap.
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It is possible that non-convexity of the tetrahedral
ensemble prevents the removal of a sliver. In this case,
the placement of a new point inside the tetrahedral en-
semble followed by further iterations of the edge/face
swapping procedure will usually eliminate all remain-
ing slivers [3].

3. Mesh enrichment
The decision whether or not to enrich a particular re-
gion of the mesh is based on a comparison between
the actual local length scale h (e.g., element width,
circum-radius) and the desired length scale specified
by a scalar variable ρ called the length density func-
tion. Suppose, for example, that the goal is to convert
an existing volume mesh into one with a smooth grada-
tion in mesh density throughout the domain and such
that the density of the volume mesh near the bound-
ary surface matches the mesh size of the boundary tri-
angulation. The value of the mesh density function at
each point on the boundary is computed as the aver-
age length of the incident boundary edges [4]. Solving
Laplace’s equation on the current volume mesh, using
the values of the length density function at the bound-
ary as Dirichlet data, will yield appropriate values of
ρ at each mesh point. If the value of ρ at any position
in the mesh is less than the actual local length scale
h then the mesh is refined by the insertion of an extra
point followed by a local mesh reconstruction using an
incremental Delaunay algorithm. Several possibilities
have been considered for selecting the position of point
placement (e.g., at element barycenters [4], along edges
[5], at element circum-centers [6] or along Voronoı̈ seg-
ments [7]). The Voronoı̈ segment method [7, 8] works
extremely well in 2D but does not extend readily to 3D.
The circum-center point insertion (CPI) method gener-
ates provably good quality meshes in 2D [8]. In 3D the
CPI method can generate meshes with good element
quality provided care is taken to remove all slivers [3].

For all cases shown in this paper, the actual local
length scale h is proportional to the element circum-
radius and point insertion is based on the CPI strategy.
A element is thus marked for refinement if the circum-
radius is too large when compared with the length den-
sity function ρ. The local mesh reconstruction exploits
a constrained Delaunay algorithm that can be applied
to any valid tetrahedral or triangular mesh. Elements
to be removed are those whose circumspheres contain
the new point subject to the constraint that no bound-
ary face should be removed and that the new point is
always visible from the exposed faces of the remain-
ing elements. This particular procedure for inserting a
new point is an integral component of the constrained
Delaunay method that has been successfully exploited
in a number of tetrahedral mesh generators [3–5].

4. Static adaptation
Extra refinement at any mesh position can be achieved
by locally reducing the length density function ρ to a
value lower than the actual length scale h. Mesh coars-
ening can be achieved in a similar way by increasing
the length density function ρ to a value larger than the

actual mesh length scale h. Let E be a scalar function,
defined over the computational domain, that provides
an estimate of the solution error. This may be some
form of a posteriori error estimate based on the com-
puted solution, or alternatively, it may be constructed
from a specific physical property [9]. An adaptation
trigger e is then constructed to effect enrichment in re-
gions of rapid change in the computed solution. The
average value Ē of the error estimator E is first com-
puted and the standard deviation σ is formed where
σ 2 = E2 − Ē2. Let

e = E − Ē − λσ

σ
(1)

where λ is a user defined constant. Then

ρnew =
{ ρ

1 + α min(e, 1)
, E > Ē + λσ

ρ, E ≤ Ē + λσ
(2)

In other words, when the error estimator E exceeds
the average plus λ times σ , the length density function
ρ is reduced in size. ρ is reduced by at most a factor

1
1+α

where α is a O(1) user defined constant. Larger
values of α create more rapid changes in mesh density
while larger values of λ increase the threshold at which
adaptation kicks in.

In a similar way, let µ be a constant defined by the
user so that the mesh will be coarsened if E falls below
the average Ē less µ times the standard deviation σ .
Set,

e = Ē − µσ − E

σ
(3)

and define the new length density function to be

ρnew =
{
ρ(1 + α min(e, 1)), E < Ē − µσ

ρ, E ≥ Ē − µσ
(4)

An example in which static adaptation is applied can
be found in the work of Lin [10]. He presents a compu-
tation of incompressible, laminar flow over a cylinder
for Reynolds numbers between 50 and 180. Vortices
shed from the cylinder are convected downstream so
that the flow in the wake region exhibits a periodicity
related to the vortex shedding frequency. For this prob-
lem the estimator E was taken to be the total pressure.
Fig. 1 shows a view of the unadapted mesh around the
cylinder while Fig. 2 shows the corresponding view of
the mesh a given instant of time t after adaptation to
the vorticity field. Figs 3 and 4 show the near wake
region of the adapted mesh and the associated flow so-
lution at time t . Note that the mesh density matches
the intensity of the vorticity and varies in a reasonably
smooth manner between regions of high and low mesh
density. Figs 5 and 6 present similar plots of the near
field vorticity distribution and adapted mesh at a time
that is one half of a period T later. It is evident that
the mesh adaptation has successfully tracked the mov-
ing vortices, refining the mesh in the new vortex posi-
tions and coarsening the part of the mesh that has been
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Figure 1 View of complete unadapted mesh at time instant t .

Figure 2 View of complete adapted mesh at time instant t .

Figure 3 Close up view of the near wake region of the adapted mesh at
time instant t .

Figure 4 Vorticity distribution in the near wake region at time instant t .

Figure 5 Close up view of the near wake region of the adapted mesh at
time t + 1

2 T .

Figure 6 Vorticity distribution in the near wake region at time t + 1
2 T .

vacated by the vortex. The computational cost of mesh
adaptation is small compared with the cost of one time
step of the flow solver. Lin was therefore able to apply
mesh adaptation repeatedly during each iterative com-
putation that advanced the flow field one time step with
the result that there is no time lag between the adapted
mesh and the computed solution.

Other types of simulation will require a different type
of error estimator E . In reference [11], for example, a
generalized solution sensor was developed that could
be applied to both inviscid and viscous flowfields. The
crack nucleation problem shown later computes the
stress field in a solid under lateral tension [12, 13].
This simulation exploits both static and dynamic adap-
tation; static adapation is driven by an error estimator
formed by the strain energy while dynamic adaptation
is needed to follow the development of the crack.

5. Dynamic adaptation
Mesh modification for time evolving domains can be
carried out by a three stage combination of mesh move-
ment, mesh coarsening and mesh enrichment. One ap-
plication of this three stage procedure forms one cycle
of dynamic adaptation. Fig. 7 shows the initial mesh
for a circular disk lying at the left hand side of a rect-
angular domain. Suppose that it is required to move
the disk to the right hand side of the computational
domain. Even if a mesh movement scheme could be
devised to achieve this goal, the resulting mesh would
exhibit very poor quality. For a given mesh movement
scheme, the extent of domain deformation that can be
accommodated during one cycle depends on how far
the mesh can be stretched without creating negative
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Figure 7 Original mesh for disk inside duct.

Figure 8 Mesh after translating disk 1 diameter to the right.

Figure 9 Mesh after disk translation of 1 diameter and mesh coarsening.

Figure 10 Mesh after 1 complete cycle of movement and modification.

Figure 11 Mesh after 7 complete cycles of movement and modification.

element volumes (see Fig. 8). Mesh coarsening is then
carried out to remove points associated with elements
that have become badly shaped during the mesh move-
ment stage (see Fig. 9). Finally, mesh enrichment serves
to re-create a mesh whose element quality is compara-
ble to that of the original mesh (see Fig. 10). This mod-
ification cycle can be repeated any number of times to
obtain a good quality mesh for any homotopic deforma-
tion. This is illustrated in Fig. 11 which shows the result
of seven consecutive cycles of dynamic adaptation. Al-
though the final mesh, shown in Fig. 11, has a different
appearance than the initial mesh of Fig. 7, measures
of mesh quality (e.g., minimum and maximum angle)
show that the meshes are comparable. At each stage
one is operating on a valid (i.e., conforming, space fill-
ing and non-overlapping) mesh which thus avoids the
difficulties that are associated with opening up pockets
and remeshing. In other words, dynamic mesh adap-
tation is achieved by transforming the mesh through a
series of intermediate states, each state being obtained

from its predecessor by either mesh movement, an edge
collapse operation or enrichment by point insertion.

6. Mesh movement
Suppose that the domain D has boundary B at time t
and that during time step 
t domain D deforms into
D′ with boundary B ′. One seeks a homeomorphism
from D to D′ so that a mesh on D is mapped to a
valid mesh on D′. Suppose that the point (x, y, z)εD
is mapped to (x ′, y′, z′)εD′ and define u = (u1, u2, u3)
where u1 = x ′ − x, u2 = y′ − y and u3 = z′ − z.
One may use the mesh on D to solve a suitable elliptic
partial differential equation and thus compute the dis-
placement vector u at all mesh points on D. Adding the
computed displacement u1 to x , u2 to y and u3 to z one
obtains the new mesh points (x ′, y′, z′) on D′.

For example, one could solve the Laplace equations
∇2u1 = 0, ∇2u2 = 0, ∇2u3 = 0 subject to the Dirichlet
boundary conditions u1, u2 and u3 given on B.

4178



MECHANICAL PROPERTIES OF MEMS STRUCTURES

In the absence of any further mesh modification, it
is clearly desirable to move the mesh as far as possible
before inversion of one or more elements causes mesh
breakdown. Elements most prone to inversion are typ-
ically those with a small volume and/or aspect ratio.
Mesh breakdown can be delayed by keeping the dis-
placement nearly constant in regions occupied by these
particular elements. Let V denote the volume of an el-
ement, with Vmax and Vmin respectively the maximum
and minimum element volumes. Define a variable dif-
fusivity by

τ = 1 + Vmax − Vmin

V
(5)

Clearly, τ = 1 for a mesh whose elements all have
the same size. For a mesh with varying element size,
τmax = Vmax

Vmin
occurs for elements whose volume is equal

to Vmin. Alternatively, the diffusivity can be made
to depend on the aspect ratio of the element. Solving
the equations ∇ · (τ∇ui) = 0, i = 1, 2, 3 provides a
mesh movement scheme [14] that allows for greater de-
formation in regions where the elements have large vol-
ume while maintaining a greater degree of mesh rigid-
ity where element volumes are small. By iterating this
procedure it is possible to enhance further the degree
of mesh deformation that can be achieved.

A disadvantage of solving Laplace’s equation, or its
variant, is the lack of any dependence between the com-
ponents of displacement. If the mesh is sheared in a
direction parallel to the x-axis, for example, the effect
of this shear is not felt by the other components of
displacement. A more robust mesh movement scheme
that overcomes this limitation can be constructed by
modeling the domain as an elastic solid and solving the
equilibrium equations for the stress field [15, 16]. In
terms of the displacement vector u the strain tensor can
be written as

εij = 1

2

(
∂ui

∂xj
+ ∂uj

∂xi

)
i, j = 1, 2, 3 (6)

For an isotropically elastic solid the stress tensor is de-
fined as

σij = λεkkδij + 2µεij i, j = 1, 2, 3 (7)

where λ and µ are the Lamé constants, δij is the
Kronecker delta and the summation convention (viz.
εkk = ε11 + ε22 + ε33) has been invoked. If there is
no distributed body force the stress field satisfies the
equation

∂σij

∂xi
= 0 (8)

Dividing by the shear modulus µ leads to an equation
that depends only on the parameter λ/µ. Alternatively,
one can introduce Poisson’s ratio

ν = λ

2(λ + µ)
(9)

and consider this to be the user defined parameter. It
is again possible to increase the rigidity of the mesh in
regions of small element size, and/or bad element aspect
ratio, by modifying the coefficients λ and µ [15, 16] in
much the same manner that variable diffusivity was
introduced above into Laplace’s equation.

A linearly varying displacement field is an exact so-
lution of Laplace’s equation and also of the equation
for elastic equilibrium (assuming constant coefficients
of elasticity). If the discrete equations, used to approxi-
mate either equation, fail to preserve this property then
inaccuracies in the numerical solution can lead to pre-
mature mesh breakdown. A linearly varying displace-
ment field will be an exact solution of the discrete equa-
tions if one uses a finite element scheme with linear
elements. An essentially equivalent solution procedure
is a vertex based finite volume scheme which assumes a
linear variation of the displacement components across
each element and uses a trapezoidal integration of the
flux terms. For a linearly varying displacement field,
the derivative of each component, and hence the flux
terms, will be constant over the entire domain. It then
follows that the trapezoidal approximation to the sur-
face integration sums to zero for each mesh point.

When mesh coarsening and enrichment are intro-
duced as part of a dynamic adaptation cycle, it is no
longer necessary to move the mesh as far as possible
during each mesh movement stage. In fact, considera-
tions of computational efficiency favor a mesh move-
ment scheme that permits a smaller degree of mesh de-
formation if this can be accomplished at a much smaller
computational cost than more robust mesh movement
methods. In practice, the combined mesh coarsening
and enrichment stages account for no more than 20%
of the total computation time if the simplest mesh move-
ment scheme is used. For more robust mesh movement
schemes the computational cost of mesh coarsening and
enrichment can be less than 5% of the total time.

A particularly simple and cost effective mesh move-
ment scheme is obtained if one approximates Laplace’s
equation by summing differences of the dependent vari-
able along each edge incident to a mesh point. Intro-
ducing the variable diffusivity adds only a negligible
computational overhead. Let φ be the dependent vari-
able and let ∇ · (τ∇φ) = 0 be the equation to be solved.
If φ0, respectively φk, represents the discrete approxi-
mation to φ at the mesh point P0, respectively Pk, then
the residual at P0 is given by

∇ · (τ∇φ)|0 ≈ 1

S0

m∑
k=1

σ0k(φk − φ0) (10)

where the k summation is over the m edges {P0 Pk | k =
1, . . . , m} incident to the point P0, the coefficient σ0k =∑

j τj where the j summation is over all the elements
incident to the edge P0 Pk and the term S0 = ∑m

k=1 σ0k.
Using the superscript n to denote the nth iteration,

one can write a point Jacobi scheme as

φn+1
0 = φn

0 + ε

S0

m∑
k=1

σ0k
(
φn

k − φn
0

)
(11)
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where 0 < ε ≤ 1 is a relaxation factor. Even if there
is no variable diffusivity, this simple mesh movement
scheme is not exact for a linearly varying displacement
field and will permit only a limited deformation of the
mesh before element inversion occurs. It is, however,
computationally far less expensive than solving the
stress equilibrium equations by a finite element method,
and the above scheme is therefore the preferred mesh
movement method for use in the dynamic adaptation
procedure.

7. Boundary enrichment
If the boundary of the computational domain changes
shape during the computation, it will be necessary
to modify the triangulation of the boundary surface.
Coarsening of the boundary triangulation occurs auto-
matically as part of the volume coarsening procedure.
It is, however, necessary to enrich the surface prior to
enrichment of the volume mesh. A boundary face is
currently marked for refinement if the maximum edge
length is more than twice the minimum edge length.
Future developments will seek to enrich the boundary
surface based on an assessment of the local curvature.

Each boundary face that has been selected in this
way is split by bisecting its longest edge. Inserting a
mesh point on a boundary edge will cause both inci-
dent boundary faces to be split (see Fig. 12). It follows
that the state of the boundary triangulation after refine-
ment will depend on the order in which the boundary
edges are taken. A list of boundary faces that have been
marked for refinement is therefore created and this list
is ordered according to triangle aspect ratio (defined
as the ratio of circum-radius to in-radius). Starting with
the face whose aspect ratio is largest, the longest edge is
bisected and the two incident boundary faces are split.
Each tetrahedron that is incident to the edge is also split
into two new tetrahedra. This procedure is applied in
turn to the longest edge of each boundary face that has
been marked for refinement. The length density func-
tion is recalculated on the boundary and a Laplacian
solver is used to distribute the length density function
throughout the volume mesh as described in the pre-
vious section. Delaunay based terahedral refinement is
then applied to the volume mesh to complete the en-
richment procedure.

It is important to ensure that each new boundary point
lies on, or at least close to, the true boundary surface.
If this information is not readily accessible then the
position can be approximated reasonably well by means
of Hermite interpolation. A similar approach has been

Figure 12 Splitting of boundary faces and tetrahedra.

suggested by Weatherill et al. [17] who interpolate new
points on boundary faces. The surface enrichment used
here only requires the interpolation of new points at the
midpoints of boundary edges. The resulting edge and
face splitting is applied recursively in a manner that
maintains a reasonable level of surface mesh quality.
Inserting new boundary points at edge midpoints in a
recursive fashion leads to a considerable simplification
of the boundary enrichment procedure. There is no need
to allow for the multiple splitting patterns that arise
when a boundary face is split along one, two or three
edges at a time. In addition, Hermite interpolation at
the midpoint of an edge assumes a particularly simple
form that would not be the case if the new point were
placed on the interior of a boundary face.

Let the two endpoints of the boundary edge be P0
with position vector x0 and P1 with position vector x1,
and let the unit normals at these points be n0 and n1 re-
spectively. The surface normal at each boundary point is
approximated by averaging the normals of the incident
boundary faces.

Let n be the unit normal to the plane � in which the
new point Q should lie. This plane also contains points
P0 and P1 and thus the edge joining P0 to P1. Fit a cubic
polynomial lying in the plane � through the points P0
and P1 whose tangents at P0 and P1 are parallel to the
corresponding surface tangent planes (see Fig. 13). Let
c be the vector from the edge midpoint to the point Q
which lies halfway along the interpolating cubic curve.
The correction c thus represents a displacement in the
plane � that should be added to the coordinates of the
edge midpoint in order to obtain an approximation to
the true boundary surface.

Let t0 and t1 be the tangent vectors lying in the plane
�. Thus,

t0 = n0 × n
|n0 × n| , t1 = n1 × n

|n1 × n| (12)

Let α0 be the angle between t0 and the edge vector
x1 − x0. Similarly, define α1 as the angle between t1
and x1 − x0 and let m0 = tan α0, m1 = tan α1, be the
imposed slopes of the interpolating curve at each end-
point. For a point lying half way between P0 and P1,
Hermite interpolation takes a particularly simple form.

Figure 13 Interpolation of boundary point at edge midpoint.
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The displacement is given by

c = (m0 − m1)

8
n × (x1 − x0) (13)

In general, the plane �, in which the interpolated point
should lie, is chosen to be the plane that bisects the di-
hedral angle between the two boundary faces incident
to the edge joining P0 and P1. This choice is, however,
undesirable at corners or salient edges where the an-
gle between the normals of adjacent faces undergoes a
large change. This situation typically occurs when two
surfaces intersect. It is then preferable to place the new
point on one of the two new surfaces so that � contains
one of the two faces that are incident to the edge joining
P0 to P1.

8. Mesh deformation and quality measures
A key feature in the successful implementation of the
dynamic adaptation procedure is the use of mesh de-
formation and quality measures to monitor the time
evolution of the mesh. The extent of boundary defor-
mation that can be tolerated during the mesh movement
stage is not known a priori. It is therefore necessary to
allow the option of automatically repeating the mesh
movement stage with a smaller boundary deformation
if any of the deformed elements has a negative volume.

More critical, however, is the need to identify those
elements that should be removed during the coarsening
stage. On the one hand, it is possible to classify elements
according to a deformation measure that assesses the
relative change in element shape as a result of mesh
movement. On the other hand, one can exploit a quality
measure to assess the instantaneous element shape or
aspect ratio. It turns out that the most effective strategy
is to coarsen the mesh based on a combined assessment
of both element deformation and element quality.

Consider a tetrahedron whose vertices are given by
the points with position vectors xn where n = 0, 1, 2, 3.
The position vector xn is a column vector of the three
coordinates (xT

n = (xn, yn, zn)). The edge matrix Tn is
defined as

Tn = (−1)n(xn+1 − xn, xn+2 − xn, xn+3 − xn) (14)

where addition in the indices is to be interpreted as
modulo four (i.e., xn+4 ≡ xn). Thus, Tn is formed by
the three edge vectors joining the vertex at xn to each
of the three remaining vertices. The determinant |Tn| of
the matrix is equal to six times the volume of the tetra-
hedron (twice the area of the triangle in the 2D case).
If a right handed rule is assumed for the edge ordering
then |Tn| > 0 for elements with positive volume.

In the definition of the edge matrix Tn the vertex n
plays a special role. Call this the corner vertex for the
edge matrix Tn. Now let F be the elementary column
exchange matrix

F =




1 1 1

−1 0 0

0 −1 0


 (15)

It follows that

Tn+1 = Tn F = T0 Fn (16)

For any given element there is a sequence of d +1 edge
matrices Tn, n = 0, . . . , d where d = 2 for a triangle
and d = 3 for a tetrahedron. It is clear that any intrinsic
property of the element, such as a deformation measure
or shape measure, should not depend on the choice of
the corner vertex.

Suppose that the element defined by the edge matrix
Tn is mapped, under the action of a mesh movement
procedure, to an element whose corresponding edge
matrix is T̃n. Define the deformation matrix associated
with this mapping by

T̃n = AnTn so that An = T̃nT −1
n (17)

Then,

An+1 = T̃n+1T −1
n+1 = T̃n F F−1T −1

n = An (18)

The matrix An is therefore independent of the choice
of the corner vertex n and one may write A for the
deformation matrix.

Now use the polar decomposition theorem to write
A as A = PU where U is a unitary matrix representing
pure rotation and P is a positive definite matrix whose
eigenvalues correspond to the modes of element distor-
tion. An eigenvalue larger than 1 represents a stretching
while a compression is indicated by an eigenvalue less
than 1. The eigenvalues of the dilatation matrix P , also
known as the singular values of A, are found by taking
the square root of the eigenvalues of AAT. Note that
AT A and AAT have the same eigenvalues even though
their eigenvectors will generally be different.

Let σmax and σmin be the maximum and minimum
singular values of A (i.e., the maximum and minimum
eigenvalues of the dilatation matrix P). If A corre-
sponds to a pure rotation then σmax = σmin = 1 and
a uniform scaling by a factor µ would result in σmax =
σmin = µ.

When distortion is so severe that an eigenvalue of the
dilatation matrix P becomes zero, the determinant of A
and hence also the determinant of the new edge matrix
T̃n is zero. It follows that the volume of the element has
shrunk to zero and any further deformation will create
elements with negative signed volumes. In practice, it
seems prudent to repeat the mesh movement with a
smaller boundary deformation if any of singular values
falls below 0.1 in size.

Several options are available for constructing a ele-
ment quality measure to assess the instantaneous ele-
ment shape or aspect ratio. In references [11, 18] the
ratio of average edge length to in-radius was used. Alter-
natively, one can construct a shape measure based on a
unitarily invariant matrix norm [19, 20] by considering
the deformation matrix associated with the transforma-
tion of a reference equilateral element.
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9. Crack nucleation study
This technique has been applied to a variety of prob-
lems, including the simulation of crack propagation
which involves both static adaptation as well as dy-
namic adaptation to adjust the mesh for the deforma-
tion that occurs as the crack penetrates the solid. Fig. 14
shows the mesh for a rectangular shaped solid that is
under lateral tension. An initial defect, modeled by a
small depression, is evident on the upper surface. The
external tension that is applied to the left and right sides
of the domain induces a stress field in the solid. This
stress field causes material to migrate along the up-
per surface and away from the region of highest strain
energy at the tip of the defect. The resulting deforma-
tion in the shape of the upper boundary changes the
stress field and increases the strain energy. The defect
thus evolves into a crack that steadily penetrates fur-
ther into the solid. Fig. 15 shows the resulting domain
and adapted mesh at a particular instant after the crack
has formed. The mesh has adapted automatically to the
change in domain shape and has become highly en-
riched in the vicinity of the crack tip in order to resolve
the large strain energy values in that region. Further de-
tails of this study and several computational results can
be found in references [12, 13].

Figure 14 Initial domain and mesh for simulation of crack propagation.

Figure 15 Deformed domain with adaptive refinement near crack tip.
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